Monday, 27 April 2015
Entia Nomina V CFP
The European Society for Analytic Philosophy - new webpage
The European Society for Analytic Philosophy was created in 1990, with the mission to promote collaboration and exchange of ideas among philosophers working within the analytic tradition, in Europe as well as elsewhere. It has thus been responsible for organizing major conferences every 3 years, the highly successful ECAP’s.
The current Steering Committee (of which I am a member), under the leadership of current president Stephan Hartmann, is seeking to expand the ways in which we can serve the (analytic) philosophical community in Europe. We will of course continue to organize ECAP, which will take place in 2017, and for which we already have a fantastic lineup of invited speakers (check it out!). But we are also considering various ways in which we can provide valuable services to the ESAP members, such as negotiating journal access with publishers (this is still in the making), among other initiatives. In particular, the brand-new website of ESAP is now online, and the goal is, among others, to concentrate useful information for (analytic) philosophers working in Europe all in one place.
However, we are only getting started, and at this points suggestions on how ESAP can truly support and galvanize the analytic philosophy community in Europe (as well as strengthening ties with colleagues elsewhere) are much welcome! We haven’t even started with an official membership system yet, precisely because we first want to have a number of services in place so as to make membership to the ESAP an attractive proposition. What are the initiatives and services we could provide that would really make a difference and facilitate the activities of our members? Comments with suggestions below would be much appreciated!
Thursday, 23 April 2015
Jamesian epistemology formalised: an explication of 'The Will to Believe'
There are two ways of looking at our duty in the matter of opinion, --- ways entirely different, and yet ways about whose difference the theory of knowledge seems hitherto to have shown very little concern. We must know the truth; and we must avoid error, --- these are our first and great commandments as would be knowers; but they are not two ways of stating an identical commandment [...] Believe truth! Shun error! --- these, we see, are two materially different laws; and by choosing between them we may end by coloring differently our whole intellectual life. We may regard the chase for truth as paramount, and the avoidance of error as secondary; or we may, on the other hand, treat the avoidance of error as more imperative, and let truth take its chance. (Section VII, James 1896)In this note, I give a formal account of James' claim using the tools of epistemic utility theory. I begin by giving the account for categorical doxastic states --- that is, full belief, full disbelief, and suspension of judgment. Then I will show how the account plays out for graded doxastic states --- that is, credences. The latter part of the note thus answers a question left open in (Pettigrew 2014). (Konek forthcoming) gives a related treatment of imprecise credences.
It is not entirely clear whether James intends, in The Will to Believe, to speak of beliefs and disbeliefs or of credences. He certainly talks of ''options'' between ''hypotheses'', which suggests the choice between two categorical states --- belief in one hypothesis or belief in the other. But he also talks of different strengths of a ''believing tendency'' and suggests that only a hypothesis with the ''maximum of liveness'' (presumably the maximum ''believing tendency'') counts as a belief (Section I, James 1896). In any case, in this note, we treat both.
Thursday, 16 April 2015
Dynamic epistemic logic solves the birthday puzzle
Proving that philosophical logicians can make real contributions to serious, societal problems, my colleague Barteld Kooi has made a video where he explains how the puzzle can be solved with the help of dynamic epistemic logic. (Barteld is one of the most prominent researchers working in the field -- in particular, he is one of the authors of Dynamic Epistemic Logic (2008) and one of the editors of the much more reasonably priced Handbook of Epistemic Logic (2015).) Here is the video:
Moreover, logician and ninja-woman Audrey Yap of University of Victoria has also provided a solution to the puzzle using similar tools, which is represented in a series of pictures; the series can be found in this post by Richard Zach.
Homework for M-Phi readers (please comment below for your answers): how are the two solutions, Barteld's and Audrey's, related? Are they similar, are they different? If different, how so? Let us know!
Friday, 10 April 2015
Aristotle's definition of the syllogism -- a dialogical interpretation
(Cross-posted at NewAPPS)
(I am currently finishing a paper on the definition of the syllogism according to Aristotle, Ockham, and Buridan. I post below the section where I present a dialogical interpretation of Aristotle's definition.)
A ‘syllogismos’ is an argument (logos) in which, (i) certain things being posited (tethentôn), (ii) something other than what was laid down (keimenôn) (iii) results by necessity (eks anagkês sumbainei)(iv) because these things are so. By ‘because these things are so’ I mean that it results through these, and by ‘resulting through these’ I mean that no term is required from outside for the necessity to come about.
Aristotle intended his syllogistic to serve as a general theory of valid deductive argument, rather than a formal system designed for a limited class of simple propositions. (Striker 2009, 79)
The definition as given in the Topics is clearer in this respect: it has the clause ‘through the things laid down’ instead of ‘because these things are so’. In this passage, Aristotle adds the remark that this clause should also be understood to mean that all premises needed to derive the conclusion have been explicitly stated. (Striker 2009, 81)
Friday, 3 April 2015
On Quine's Arguments Against QML, Part 3: Ontology
The second objection that Quine levels against quantified modal logic in [1] is that its ontology is “curiously idealistic” and “repudiates material objects” [1, p. 43]. This consideration arises from the same starting point as the objection discussed in the previous subsection: The problem of quantifying into an intensional context
Consider the following:
(6) ∃x(x is red ∧ M(x is round))
Quine says that in order to interpret this sentence, we need supplementary criteria, and suggests one potential criterion:
(ii) An existential quantification holds if there is a constant whose substitution for the variable of quantification would render the matrix true [1, p. 46],
where a ‘matrix’ is simply “an expression which has the form of a statement but contains a free variable” [2, p. 126]. This criterion, he argues has the consequence that
there are no concrete objects (men, planets, etc.), but rather that there are only, corresponding to each supposed concrete object, a multitude of distinguishable entities (perhaps ‘individual concepts’, in Church’s phrase) [1, p. 47].
Thus, instead of having concrete objects such as Venus, Mars, and Pluto in our ontology, we have instead things such as Venus-concept, Evening-Star-concept, Morning-Star-concept, etc. Let us spell out his argument for this conclusion.
Suppose that Venus, Evening Star, and Morning Star are all constants in our language suitable for use in criterion (ii). Each of these constants bears a certain relationship to itself and to the other in virtue of the empirical data; Quine calls this relation ‘congruence’. The question is what these constants are names of; if they pick out concrete objects in the domain, then they should all pick out the same concrete object, namely, a planet. But we shall see that truths about congruence prevent us from taking as the values of these constants concrete objects.
Let C represent the relation of congruence; we have the following two truths:
(7) Morning Star C Evening Star ∧ L(Morning Star C Morning Star)
(8) Evening Star C Evening Star ∧ ¬L(Morning Star C Evening Star)
From these along with (ii), we can conclude that there are at least two distinct objects in the ontology which are congruent with ‘Evening Star’:
(9) ∃x(x C Evening Star ∧ L(x C Morning Star)
(10) ∃x(x C Evening Star ∧ ¬L(x C Morning Star)
But since there is but one planet Venus, it must be the case that the ontology is not made up of planets and other concrete objects, but rather concepts of planets, for only then could we find constants whose substitution for the variable would make (9) and (10) true.
A strange ontology this may be, but it does not immediately follow from this that QML is incoherent or that expressions involving quantification into modal contexts are nonsense. For let us recall what Quine’s modal logic is a modal logic of: Not logical necessity, not physical necessity, but analytic necessity. As discussed above, the notion of analyticity is defined in terms of synonymy. Synonymy—sameness of meaning or sameness of intension—is itself a notion concerning concepts, not objects. Therefore, in a modal logic designed to explicate a notion based on concepts rather than objects, we should not be surprised that the ontology of that logic is populated with concepts, rather than objects. What is surprising is that Quine does not apparently recognize this, despite the fact that he says, elsewhere, that “being necessarily or possibly thus and so is in general not a trait of the object concerned, but depends on the manner of referring to the object” [3, p. 148, emphasis added]. If the logic of necessity is thus not about properties of actual objects but of ways that objects are described, then we should in fact expect that the ontology of the logic to not be populated by actual objects, but rather by ways that objects can be described, i.e., by concepts.
References
- [1] W. V. Quine. The problem of interpreting modal logic. Journal of Symbolic Logic, 12(2):43–48, 1947.
- [2] Willard V. Quine. Notes on existence and necessity. Journal of Philosophy, 40(5):113–127, 1943.
- [3] W. V. O. Quine. From a Logical Point of View. Harper & Row, 2nd edition, 1961.
© 2015 Sara L. Uckelman