Fermat, set theory, and arithmetic (guest post by Colin McLarty)
This is a guest post by Colin McLarty, Truman P. Handy Professor of Intellectual Philosophy and professor of Mathematics at Case Western Reserve University. It is a follow-up to a short post I wrote last month on his exciting current work on the foundations of mathematics. In this post, Colin explains to us what the whole project is about in just 1000 words.
--------------
Some philosophers suspect mathematicians don't care about foundations but only care about what works. But that elides the problem mathematicians constantly face: what will work? And it can promote the misapprehension that modern mathematics abandons intuition in favor of technicalities. Mathematics works by making rigor serve intuition. Mathematicians use tools that help them see how to do what they want---without breaking down even in what I will call "deliberate, utterly reliable gaps".
By that I mean points in an argument where a mathematician cites a substantial, hard to prove result where the citing mathematician may or may not have once gone through the whole proof of that result but certainly is not calling the whole proof to mind in citing it. The citing mathematician relies on that earlier result not only to be proved correctly, but to be stated in full precision so it can be applied concisely out of context without fear of error. Major proofs today have many deliberate utterly reliable gaps, as do their citations in turn.
These themes converged in the on-line row over whether Wiles’s proof of Fermat's Last Theorem (FLT) uses Grothendieck universes. Universes are controversial in some circles since they are sets large enough to model Zermelo Fraenkel set theory (ZF) and so, by Gödel's incompleteness theorem, ZF cannot prove they exist.
The term "universe" is not in Wiles's paper. Neither are proofs of most theorems he uses. He gives citations which cite others in turn. The citations often lead to the works where Grothendieck and colleagues established the modern methods of number theory (and about half of today’s category theory) using universes. As he depended on those proofs so he depended on universes.
One way out is never taken. Grothendieck knew everything he does with universes in practice he could also do by discarding some larger scale structures and treating others as mere ways of speaking rather than actual entities. Number theorists often say something like this would put their work on a ZF foundation. But they give no precise statement. And really doing it would distract from arithmetic by offering un-insightful set theoretic complications for no serious foundational benefit. ZF itself is remote from arithmetic.
It is no surprise theoretically that a statement about numbers could be proved by high level set theory. Gödel showed things like this have to happen sometimes, since any increase in the consistency strength of a foundation makes new number theoretic statements provable. Consistency itself can be expressed by number theoretic statements. But it is surprising in fact that FLT should be proved this way. We do not expect to see the Gödel phenomenon in such simple statements. I am working to lessen the surprise in the case of FLT and other recent number theory by bringing the proofs closer to arithmetic. I have formalized the whole Grothendieck toolkit in finite order arithmetic. That is the strongest theory that is commonly called "arithmetic". From that point of view it is the simple theory of types including an axiom of infinity. From another viewpoint it is the weakest theory that is commonly called "set theory". It is set theory using only numbers and sets of numbers and sets of sets of numbers, all built from numbers in some finite number of levels by bounded comprehension.
The version in my article "A finite order arithmetic foundation for cohomology" looks like Grothendieck’s to anyone but a professional logician. You can just replace a few foundational passages in the Grothendieck work by this foundation. It proves less than Grothendieck’s universes in principle. But all the general theorems actually in the Grothendieck corpus follow verbatim as Grothendieck and his colleagues proved them.
On the other hand, this foundation is still much stronger than PA. It uses every finite level above PA, though only finite levels.
My current focus is to formalize the central Grothendieck tools at the logical strength of second or third order arithmetic. On one hand this will formalize the insight of practitioners who say their work with these tools really only uses "very small sets". And on the other hand it will bring the foundation within striking distance of methods of reverse mathematics, a well-developed discipline exploring the exact logical strength of mathematical results expressible in second order arithmetic. My article "Zariski cohomology in second order arithmetic" gives some progress on this front.
One goal is to take current methods of number theory, which textbooks and reference works justify by various combinations of Grothendieck universes and hand waving, and justify them rigorously in pretty much their current form in low order arithmetic. Essential to this goal is that most proofs do not get longer and their appearance is not much changed. The other goal is to show that the great number theoretic results proved by these tools can be proved in Peano Arithmetic. It would be great to find proofs in PA without changing the existing proofs very much. But that may not be possible. At any rate it is not intrinsic to the second goal. Showing these theorems can be proved in PA is likely to require serious advances in number theory. I can try to clear up the logical side.
As a philosophical goal I want to show how Grothendieck and many mathematicians since him have cared enough to either develop rigorous foundations for these tools or else to protest foundations they do not like—and others draw on these foundations without needing to highlight them. Grothendieck has been clear that the size of sets is not important to him but the conceptual unity of his toolkit is. I have shown that unity can be preserved without anything like the size of his original universes. I regard Grothendieck as developing the unity of intuition and rigor, in terms very like the post "Terry Tao on rigor in mathematics". I hope others will too.
--------------
Some philosophers suspect mathematicians don't care about foundations but only care about what works. But that elides the problem mathematicians constantly face: what will work? And it can promote the misapprehension that modern mathematics abandons intuition in favor of technicalities. Mathematics works by making rigor serve intuition. Mathematicians use tools that help them see how to do what they want---without breaking down even in what I will call "deliberate, utterly reliable gaps".
By that I mean points in an argument where a mathematician cites a substantial, hard to prove result where the citing mathematician may or may not have once gone through the whole proof of that result but certainly is not calling the whole proof to mind in citing it. The citing mathematician relies on that earlier result not only to be proved correctly, but to be stated in full precision so it can be applied concisely out of context without fear of error. Major proofs today have many deliberate utterly reliable gaps, as do their citations in turn.
These themes converged in the on-line row over whether Wiles’s proof of Fermat's Last Theorem (FLT) uses Grothendieck universes. Universes are controversial in some circles since they are sets large enough to model Zermelo Fraenkel set theory (ZF) and so, by Gödel's incompleteness theorem, ZF cannot prove they exist.
The term "universe" is not in Wiles's paper. Neither are proofs of most theorems he uses. He gives citations which cite others in turn. The citations often lead to the works where Grothendieck and colleagues established the modern methods of number theory (and about half of today’s category theory) using universes. As he depended on those proofs so he depended on universes.
One way out is never taken. Grothendieck knew everything he does with universes in practice he could also do by discarding some larger scale structures and treating others as mere ways of speaking rather than actual entities. Number theorists often say something like this would put their work on a ZF foundation. But they give no precise statement. And really doing it would distract from arithmetic by offering un-insightful set theoretic complications for no serious foundational benefit. ZF itself is remote from arithmetic.
It is no surprise theoretically that a statement about numbers could be proved by high level set theory. Gödel showed things like this have to happen sometimes, since any increase in the consistency strength of a foundation makes new number theoretic statements provable. Consistency itself can be expressed by number theoretic statements. But it is surprising in fact that FLT should be proved this way. We do not expect to see the Gödel phenomenon in such simple statements. I am working to lessen the surprise in the case of FLT and other recent number theory by bringing the proofs closer to arithmetic. I have formalized the whole Grothendieck toolkit in finite order arithmetic. That is the strongest theory that is commonly called "arithmetic". From that point of view it is the simple theory of types including an axiom of infinity. From another viewpoint it is the weakest theory that is commonly called "set theory". It is set theory using only numbers and sets of numbers and sets of sets of numbers, all built from numbers in some finite number of levels by bounded comprehension.
The version in my article "A finite order arithmetic foundation for cohomology" looks like Grothendieck’s to anyone but a professional logician. You can just replace a few foundational passages in the Grothendieck work by this foundation. It proves less than Grothendieck’s universes in principle. But all the general theorems actually in the Grothendieck corpus follow verbatim as Grothendieck and his colleagues proved them.
On the other hand, this foundation is still much stronger than PA. It uses every finite level above PA, though only finite levels.
My current focus is to formalize the central Grothendieck tools at the logical strength of second or third order arithmetic. On one hand this will formalize the insight of practitioners who say their work with these tools really only uses "very small sets". And on the other hand it will bring the foundation within striking distance of methods of reverse mathematics, a well-developed discipline exploring the exact logical strength of mathematical results expressible in second order arithmetic. My article "Zariski cohomology in second order arithmetic" gives some progress on this front.
One goal is to take current methods of number theory, which textbooks and reference works justify by various combinations of Grothendieck universes and hand waving, and justify them rigorously in pretty much their current form in low order arithmetic. Essential to this goal is that most proofs do not get longer and their appearance is not much changed. The other goal is to show that the great number theoretic results proved by these tools can be proved in Peano Arithmetic. It would be great to find proofs in PA without changing the existing proofs very much. But that may not be possible. At any rate it is not intrinsic to the second goal. Showing these theorems can be proved in PA is likely to require serious advances in number theory. I can try to clear up the logical side.
As a philosophical goal I want to show how Grothendieck and many mathematicians since him have cared enough to either develop rigorous foundations for these tools or else to protest foundations they do not like—and others draw on these foundations without needing to highlight them. Grothendieck has been clear that the size of sets is not important to him but the conceptual unity of his toolkit is. I have shown that unity can be preserved without anything like the size of his original universes. I regard Grothendieck as developing the unity of intuition and rigor, in terms very like the post "Terry Tao on rigor in mathematics". I hope others will too.
I like this! I expect, or hope, things to eventually converge below PI(1,3)-comprehension.
ReplyDeleteThis is a phenomenal approach. Has there been any recent publications or advancements on this? I'd be curious to know how this looks using finite order arithmetic. While I find this fascinating and look forward to reading more, I confess my broad ignorance as I am only an undergraduate in math and have only this semester opened my view into the world of mathematics beyond calculus. However, I applaud your use of simplistic and straightforward language that has allowed me access to the information here. I'm excited to see how this develops.
ReplyDeleteThis comment has been removed by the author.
ReplyDelete
ReplyDeleteHodgson : Jangan Pernah Lupakan Andy Carroll
Berita terbaru dan terkini dari Agen Bola – Big Boss Westham, Sam allardyce memberikan peringatan kepada hodgson untuk tidak pernah melupakan andy carroll.
Semenjak dibeli oleh West Ham dari Liverpool pada 2013 lalu, Carroll memang sempat mengalami cedera panjang, namun akhir – akhir ini dia tampil baik dan Allardyce pun merasa pemainnya itu pantas masuk skuat Tiga Singa.
City Holiday Terpercaya - Saya tidak memainkannya hanya untuk memenangkan duel udara namun mengontrol bola dengan dada dan kaki, lalu mengirimkannya ke pemain lain. Jika ia fit, ia bisa melakukan apapun. Roy tidak bisa melupakannya.
Dan Saya pikir Andy adalah alternatif yang fantastis, anda bisa memainkannya sebagai starter atau dari bangku cadangan,
Sumber http://cityholidaybet.com/
Well post its tell us how to solve arithmetic question in math and how to find answer such a great info for students thanks for sharing paraphrasing service .
ReplyDeleteBenarkah Claudio Bravo Bakal Berlabuh ke Manchester City ?
ReplyDeletehttps://indo11agenbola.files.wordpress.com/2016/07/agenbola.jpg
Agen Bola Melaporkan Berita Olahraga Terkini dan terbaru Indo11.com - Pep Guardiola tampaknya sedang mencari kiper baru. Manajer Manchester City tersebut berencana memboyong kiper Barcelona.
Dia adalah Claudio Bravo. Kiper berusia 33 tahun telah membukukan 16 clean sheets dari 32 pertandingan di La Liga 2015-2016.
Bravo terlihat tangguh di bawah mistar. Buktinya, dia melakukan 68 penyelamatan gemilang. Bila dirata-rata, kiper Timnas Chile itu melakukan 2,13 penyelamatan per laga. Tingkat keberhasilannya menyelamatkan gawang Los Blaugrana sebesar 95 persen.
Mantan kiper Real Sociedad itu masih memiliki kontrak di Camp Nou Stadium hingga 30 Juni 2018. Demi mendapatkan Bravo, City bersedia menebus klausul jualnya yang seharga 20 juta pounds atau senilai dengan Rp 339 miliar.
Guardiola mengincar Bravo karena ragu dengan ketangguhan Joe Hart di bawah gawang Manchester Biru. Terlebih lagi, Hart melakukan kesalahan fatal yang menyebabkan tersingkirnya Inggris di Piala Eropa 2016.
Ketika itu, Hart tidak sempurna menahan tendangan pemain Islandia, Kolbeinn Sigthorsson di Stade de Nice pada babak 16 besar Piala Eropa 2016. Gol Sigthorsson itu membuat Islandia menang 2-1.
Benarkah Pogba Bakal Kembali Berseragam United?
ReplyDeleteAgen Bola Melaporkan Berita Olahraga Terkini dan terbaru Indo11.com - Manchester United memang berambisi kembali memakai jasa Paul Pogba. Sebab, Jose Mourinho sangat ingin memakai tenaga gelandang timnas Prancis itu.
Sebagaimana diberitakan AS pada Jumat (9/7/2016), MU telah menyetujui kesepakatan secara prinsip dengan agen Pogba, Mino Raiola. Kesepakatan itu telah memberikan MU banyak kelonggaran dalam negosiasi.
Klub berjuluk Setan Merah itu bersedia membayar Juventus 120 juta euro atau sekitar Rp 1,73 triliun untuk menebus Pogba. Selain itu, MU juga menawarkan gaji 13,5 juta euro atau sekitar Rp 195 miliar per tahun setelah pajak untuk Pogba.
Dalam konferensi perdananya, Mourinho menegaskan akan mendatangkan empat pemain baru, tiga di antaranya telah resmi begabung dengan MU. Mereka adalah Eric Bailly, Henrikh Mkhitaryan, dan Zlatan Ibrahimovic.
Sementara pemain keempat dikabarkan adalah Pogba. Mengingat laba usaha MU lebih dari 200 juta euro dan ditopang sponsor menguntungkan seperti Adidas dan Chevrolet serta direvisinya hak televisi Liga Inggris tidak menutup kemungkinan MU dapat membawa pulang Pogba.
AS dalam laporannya bahkan menulis jika chief executive MU Ed Woodward akan bertemu dengan perwakilan Juve pada pekan depan untuk mengajukan tawaran resmi 120 juta euro.
United Tertarik Datangkan Winger Pachuca
ReplyDeleteAgen Bola Melaporkan Berita Olahraga Terkini dan terbaru Indo11.com - Hirving Lozano adalah seorang winger muda berbakat dari klub Pachuca asal Meksiko. Lazano sendiri adalah seorang winger muda yang memiliki kualitas yang sangat cemerlang. Gaya permainan lazano sendiri memang mirip dengan seniornya yang pernah membela United Chicarito Hernandez.
Hirving Lozano merasa sangat tersanjung dengan ketertarikan klub sebesar Manchester United untuk meminang dirinya. Hirving Lozano sendiri memang ingin merasakan atmosfer sepak bola dunia yang sangat terkenal seperti seniornya Chicarito. Namun, lazano sendiri belum mengetahui tentang ketertarikan United untuk memboyong dirinya dari Pachuca.
Spekulasi terkait masa depan winger Pachuca itu semakin gencar menyusul klaim mertua Lozano yang mengatakan bahwa pemuda 20 tahun itu akan segera bergabung dengan klub raksasa Liga Primer Inggris tersebut. Meski begitu, pelatih Pachuca Diego Alonso sebelumnya mengaku belum mendapatkan penawaran dari kubu Setan Merah, dan ketidakjelasan terkait transfer ini membuat Lozano bingung.
“Sungguh menyenangkan untuk mendengar orang-orang membicarakan soal kemungkinan transfer ke Manchester United, namun itu akan jauh lebih baik jika itu merupakan kenyataan,” kata Lozano kepada wartawan.
“Saya tidak tahu apa pun mengenai ketertarikan United. Jika pihak klub memberi tahu saya sesuatu, kita lihat nanti, namun di tahapan ini saya tidak tahu apa pun.
“Saya sekarang di Pachuca dan kita lihat nanti masa depannya seperti apa.”
Icardi Tidak Menerima Pinangan Atletico Madrid
ReplyDeleteAgen Bola Melaporkan Berita Olahraga Terkini dan terbaru Indo11.com - Mauro Icardi saat ini sedang diminati klub asal Spanyol. Yakni, Atletico Madrid. Tawaran dari klub pun sudah dilayangkan. Los Rojiblancos memang sangat ingin menduetkan Icardi dengan Antoine Griezmann. Hal trsebut pun diungkapkan Wanda Nara.
”Benar Atletico telah mengajukan tawaran, namun saya pikir transfer ini sulit. Icardi ingin bertahan di Inter dan masih bahagia di sini,” ujar Nara sebagaimana dilansir Football Espana pada Sabtu (9/7/2016).
”Selain Inter beberapa klub lain juga tertarik mendapatkannya, dan saya sudah berbicara dengan semua Direktur klub lain. Tetapi Icardi adalah kapten Inter dan kontraknya baru diperbarui,” katanya menambahkan.
Sejak bergabung tiga tahun lalu, Icardi menjadi ujung tombak andalan Inter. Ia sudah mencetak 52 gol dari 105 laga di semua kompetisi.
”Tidak bisa saya mungkiri kalau Icardi dan pelatih Atletico, Diego Simeone saling berkomunikasi. Tetapi mereka tak pernah bicara sepak bola,” kata Nara.
Danny Ings Siap Jadi Mesin Gol The Reds
ReplyDeleteAgen Bola Melaporkan Berita Olahraga Terkini dan terbaru Indo11.com - Penyerang Liverpool, Danny Ings mengaku siap untuk kembali bermain di pertandingan kompetitif musim depan. Pelatih Liverpool, Jurgen Klopp mengungkapkan keyakinannya pada sosok Danny Ings yang ia yakini mampu menjadi mesin gol The Reds di masa depan.
“Danny Ings, dengan kualitasnya, akan mencetak banyak gol di masa depan, itu jelas,” ujarnya Klopp.
“Tapi setelah musim lalu dan cedera yang sangat panjang, dia tak harus menempatkan begitu banyak tekanan pada dirinya sendiri. Dia harus menikmati pertandingan, dia perlu untuk mencapai kebugaran setelah cedera panjang. Anda butuh periode lama untuk kembali 100 persen bugar,” sambungnya.
Ings menunjukkan bahwa dirinya siap kembali bersaing di lini depan The Reds musim depan. Tekad itu sudah ia buktikan dengan satu gol kemenangan yang ia cetak ke gawang Tranmere Rovers.
“Saya berada di kondisi baik dan siap. Saya telah melakukan latihan ekstra selama musim panas dan saya telah berhasil menemukan keseimbangan yang tepat pula. Ini juga karena saya sudah bekerja sangat keras selama enam bulan terakhir untuk bisa berada dalam kondisi seperti ini,” ujarnya Ings.
“Saya sudah siap. Semoga saya bisa lebih baik daripada di laga ini, terus menjaga kebugaran, mendapatkan lebih banyak waktu bermain dan juga mencetak gol sebanyak yang saya bisa. Saya sungguh bahagia,” tandasnya.
Pemain Portugal Mengaku Tegang Jelang Final Euro 2016
ReplyDeletemRYsoqIbymU4NILwZ1h3hG--QCLcB/s320/agenbola.jpg
Agen Bola Melaporkan Berita Olahraga Terkini dan terbaru Indo11.com - Blaise Matuidi berkeras ia akan coba untuk melakukan semua persiapan dengan normal, jelang pertandingan final Euro 2016 antara Prancis dan Portugal di Stade de France akhir pekan ini.
Namun sosok berusia 29 tahun mengatakan bahwa nuansa ketegangan memang mulai menjalar di dalam tim.
“Saya tidak pernah mengalami situasi seperti ini sebelumnya, final Euro. Terkait persiapan pertandingan, tidak ada yang berubah, semuanya tetap sama,” tutur Matuidi pada Goal International.
“Saya terus berlatih, dan juga memakan makanan yang sama, tidur, itu semua hanya ada dalam pikiran anda. Saya mencoba untuk seminimal mungkin mengalami stress.”
“Memang ada ketegangan yang saya rasakan. Namun begitu kami ada di stadion nanti, kami akan melupakan semuanya dan kami akan bermain dengan cara terbaik dan juga meraih hasil yang kami inginkan.”
“Kami akan siap karena Minggu nanti akan menjadi pertandingan terpenting dalam hidup kami. Kami akan memberikan segalanya.”
good blog, please update.
ReplyDeleteagen SBOBET terpercaya
judi bola online
agen taruhan SBOBET
agen taruhan bola
Melepas Kecanduan Judi Online Di Agen Sbobet Online - Bermain taruhan online memang sangat menyenangkan bila anda ingin memperoleh banyak uang namun akan menjadi masalah bila anda bermain terlalu berlebihan dan tidak bisa kontrol diri serta ego anda ketika bertaruh dan akhirnya kehabisan uang dikarenakan bermain taruhan online di agen sbobet online, untuk itu perlunya kesabaran serta penguasaan diri ketika anda bermai judi online dan bila perlu anda bisa datang ke psikiater untuk dapat melakukan terapi guna mengurangi kecanduan dari dalam bermain judi
ReplyDeleteOperator Agen CQ9
ReplyDeletePrediksi Parlay Harian
Situs Web Slot Mobile
I will certainly digg
ReplyDeleteit and personally suggest to my friends. https://everestpokeritalia.com I am confident they will be benefited from
this website.
debut Messi di Paris Saint Germain
ReplyDeleteSilakan mampir untuk membaca berita seputar Ligue 1 dan Lionel Messi debut Messi di Paris Saint Germain
ReplyDeletehttp://www.jualvape.com/
ReplyDeleteLENITOGEL
ReplyDeleteKOKTOTO