The Mathematics of Dutch Book Arguments
Dutch Book arguments purport to establish norms that govern credences (that is, numerically precise degrees of belief). For instance, the original Dutch Book argument due to Ramsey and de Finetti aims to establish Probabilism, the norm that says that an agent's credences ought to obey the axioms of mathematical probability. And David Lewis' diachronic Dutch Book argument aims to establish Conditionalization, the norm that says that an agent ought to plan to update in the light of new evidence by conditioning on it. As we will see in this post, there is also a Dutch Book argument for the Principal Principle as well, the norm that says that an agent ought to defer to the chances when she sets her credences. We'll look at each of these arguments below.
Each argument consists of three premises. The second is always a mathematical theorem (sometimes known as the conjunction of the Dutch Book Theorem and the Converse Dutch Book Theorem). My aim in this post is to present a particularly powerful way of thinking about the mathematics of these theorems. It is due to de Finetti. It is appealing for a number of reasons: it is geometrical, so we can illustrate the theorems visually; it is uniform across the three different Dutch Book arguments we will consider here; and it establishes both Dutch Book Theorem and Converse Dutch Book Theorem on the basis of the same piece of mathematics.
I won't assume much mathematics in this post. A passing acquaintance with vectors in Euclidean space might help, but it certainly isn't a prerequisite.
The three premises of a Dutch Book argument for a particular norm are as follows:
(1) An account of the sorts of decisions a given set of credences will (or should) lead an agent to make.
(2) A mathematical theorem showing two things: (i) relative to (1), credences that violate norm will lead an agent to make decisions with property ; (ii) relative to (1), credences that satisfy norm in question will not lead an agent to make decisions with this property .
(3) A norm of practical rationality that says that, if an agent can avoid making decisions with property , she is irrational if she does make such a decision.
In this post, I'll present Dutch Book arguments of this form for Probabilism, Conditionalization, and the Principal Principle. But I'll be focussing on premise (2) in each case. There's plenty to say about premises (1) and (3), of course. But that's for another time.
The first premise in each Dutch Book argument is the same. It has two parts: the first tells us, for any proposition in which the agent has a credence, the fair price she ought to pay for a bet on that proposition; the second tells us the price she ought to pay for a book of bets on a number of different propositions given the price she's prepared to pay for each individual bet. Thus, we have
(1a) If an agent has credence in proposition , she ought to pay for a bet that pays out if is true and if is false. (In such a bet, is called the stake.)
(1b) If an agent ought to pay for Bet 1 and for Bet 2, she ought to pay for a book consisting of Bet 1 and Bet 2. (This is sometimes called the Package Principle.)
Putting these together, we get the following: Suppose is a set of propositions. And suppose we represent our agent's credences in these propositions by a vector where is her credence in . And suppose we consider a book of bets in which the stake on is . Then we can represent this book by the vector Then the price that the agent ought to pay for this book of bets is where is the dot product of and considered as vectors.
Happily, there is also a nice way to represent the payoff of a book of bets at a given possible world . Represent that possible world by the following vector: where if is true at and if is false at . Then the payoff of at is As we will see, these vector representations will prove very useful below.
In this section, we're looking at the Dutch Book argument for Probabilism.
Probabilism It ought to be that a set of credences obeys the axioms of mathematical probability.
Let us turn to premise (3) of this argument. It says that it is irrational for an agent to have credences that lead her to make decisions that will lose her money in every world that she considers possible. Now, a book of bets loses an agent money if But recall from above: the payoff of a book of bets at a world is ; and the price of that book is . Thus, the agent is irrational if there is a book such that for all worlds . Equivalently, for all .
So the Dutch Book Theorem (that is, premise (2)) can be stated as follows:
Theorem 1
(i) If violates Probabilism, then there is a book such that for all worlds (equivalently, for all ).
(ii) If satisfies Probabilism, then there is no book such that (equivalently, ) for all worlds and (equivalently, ) for some world .
We now turn to the proof of this theorem. It is based on two pieces of mathematics: the first involves some basic geometrical facts about the dot product; the second involves a neat geometric characterization of the credences that satisfy Probabilism.
First, a well known fact about the dot product. If and are vectors in , we have where is the angle between and . Since , we have And, by basic trigonometry, we have Thus:
Lemma 1 satisfies Probabilism iff .
where, if is a set of vectors in , is the convex hull of : that is, is the smallest convex set that includes ; if is finite, then is the set of linear combinations of elements of .
Thus, Lemma 1 says that the vectors that represent the probabilistic sets of credences are precisely those that belong to the convex hull of the vectors that represent the possible worlds.
How does this help? Let's take the case in which violates Probabilism. That is, lies outside the convex hull of the vectors representing the different possible worlds. Then it is easy to see from Figure 1 below that there is a vector that lies inside that convex hull such that, for a given world , the angle between the vector and the vector is oblique. Thus, if we let , we have Theorem 1(i).
Now let's take the case in which satisfies Probabilism. That is, lies inside the convex hull of the vectors representing the different possible worlds. Then it is easy to see from Figure 2 below that, if is a vector, then while there may be some worlds such that the angle between and is oblique, there must also be some worlds such that the angle between and is acute. Alternatively, it is possible that the angles between and for all worlds are all right.
This completes the geometrical proof of Theorem 1, which combines the Dutch Book Theorem and the Converse Dutch Book Theorem.
The Principal Principle says, roughly, that an agent ought to defer to the chances when she sets her credences. One natural formulation of this (explicitly proposed by Jenann Ismael and entailed by a slightly stronger formulation proposed by David Lewis) is this:
Principal Principle It ought to be the case that is in .
That is, the Principal Principle says that one's credence function ought to be a linear combination of the possible chance functions.
Now, adapting the proof of Theorem 1 above, replacing the possible worlds by possible chance functions (represented as vectors in the natural way), we easily prove the following:
Theorem 2
(i) If violates the Principal Principle, then there is a book such that for all possible chance functions .
(ii) If satisfies Probabilism, then there is no book such that for all possible chance functions and for
some possible chance function .
But what does this tell us? Well, as before, is the price our agent would pay for the book . But this time, the other side of the inequality is . And this, it turns out, is the objective expected payout of , rather than the actual payout of . Thus, violating the Principal Principle does not necessarily make an agent vulnerable to a true Dutch Book. But it does lead them to pay a price for a book of bets that is higher than the objective expected value of that book, according to all of the possible chance functions. And this, we might think, is irrational. For one thing, such an agent will, with objective chance 1, lose money in the long run. Thus, in the Dutch Book argument for the Principal Principle, premise (1) is as before, premise (2) is Theorem 2, but premise (3) becomes the following: It is irrational for an agent to have credences that lead her to pay more than the objective expected value for a book of bets.
Conditionalization is the following norm:
Conditionalization Suppose our agent has credence at ; and suppose she knows that, by , she will have received evidence from the partition . And suppose she plans to update as follows: If , then . Then it ought to be that for .
In fact, the Dutch Book argument for Conditionalization that we will present is primarily a Dutch Book argument for van Fraassen's Reflection Principle, which is equivalent to Conditionalization. The Reflection Principle says the following:
Reflection Principle Suppose our agent has credence at ; and suppose she knows that,
by , she will have received evidence from the partition . And suppose she plans to update as follows: If ,
then . Then it ought to be that:
(i) for ;
(ii) is in .
That is, Reflection says that an agent's current credences ought to be a mixture of her planned future credences. Since Reflection and Conditionalization are equivalent, it suffices to establish Reflection.
Here is the theorem that provides the second premise of the Dutch Book argument for Reflection:
Theorem 3
(i) Suppose violate Reflection. Then there are books such that (a) for all , for all worlds in ; and (b) for some , for some world in .
(ii) Suppose satisfy Reflection. Then there are no books such that (a) for all , for all worlds in ; and (b) there is such that for some in .
What does this say? It says that, if you plan to update in some way other than conditioning on your evidence, and thereby violate Reflection, there is a book that you will accept at as well as, for each , a book that you will accept at if you learn such that, together, they will guarantee you a loss. And this will not happen if you plan to update by conditioning.
How do we prove this? Theorem 3(i) is the easier to prove. Suppose violate Reflection. First, suppose that this is because . Then let and for all . And let be the book consisting only of a bet on with stake . Then for all worlds in . And for all worlds in .
Second, suppose that for all . But suppose is not inside the convex hull of the s. So violate Reflection. Then, adapting the proof of Theorem 1 by replacing the worlds with the planned posterior credences , we get that there is a book such that for all . So if we let for all , we get for all worlds . This completes the proof of Theorem 3(i).
Now we turn to Theorem 3(ii). Suppose satisfy Reflection. Suppose, for a contradiction, that we have (a) for all , for all in ; and (b) for some , for some in . Our plan is to use this to construct such that (a) for all , for all in ; and (b) for some , for some in . And we know that this is impossible from Theorem 1(ii).
We construct as follows: First, suppose that are the atoms of the algebra . Then notice that for each book of bets on the propositions , there is a book on the atoms of such that is equivalent to : that is, the payout of is the same as the payout of at every world; and the price that a probabilistic agent should pay for is exactly the price she should pay for . Thus, if we have , then we have , and so on. Thus, in what follows, we can assume without loss of generality that is a book of bets only on the atoms of . Then we define as follows, where for any atom , we write for the cell of the partition in which lies:
Then we can show that,
for all and . Suppose is a world; suppose is the atom that is true at that world; suppose, as above, that lies in cell . Then we have
by assumption. This completes the proof of Theorem 3(ii) and thus Theorem 3.
Each argument consists of three premises. The second is always a mathematical theorem (sometimes known as the conjunction of the Dutch Book Theorem and the Converse Dutch Book Theorem). My aim in this post is to present a particularly powerful way of thinking about the mathematics of these theorems. It is due to de Finetti. It is appealing for a number of reasons: it is geometrical, so we can illustrate the theorems visually; it is uniform across the three different Dutch Book arguments we will consider here; and it establishes both Dutch Book Theorem and Converse Dutch Book Theorem on the basis of the same piece of mathematics.
I won't assume much mathematics in this post. A passing acquaintance with vectors in Euclidean space might help, but it certainly isn't a prerequisite.
The form of a Dutch Book argument
The three premises of a Dutch Book argument for a particular norm
(1) An account of the sorts of decisions a given set of credences will (or should) lead an agent to make.
(2) A mathematical theorem showing two things: (i) relative to (1), credences that violate norm
(3) A norm of practical rationality that says that, if an agent can avoid making decisions with property
In this post, I'll present Dutch Book arguments of this form for Probabilism, Conditionalization, and the Principal Principle. But I'll be focussing on premise (2) in each case. There's plenty to say about premises (1) and (3), of course. But that's for another time.
The Dutch Book argument for Probabilism
The first premise in each Dutch Book argument is the same. It has two parts: the first tells us, for any proposition in which the agent has a credence, the fair price she ought to pay for a bet on that proposition; the second tells us the price she ought to pay for a book of bets on a number of different propositions given the price she's prepared to pay for each individual bet. Thus, we have
(1a) If an agent has credence
(1b) If an agent ought to pay
Putting these together, we get the following: Suppose
Happily, there is also a nice way to represent the payoff of a book of bets
In this section, we're looking at the Dutch Book argument for Probabilism.
Probabilism It ought to be that a set of credences
Let us turn to premise (3) of this argument. It says that it is irrational for an agent to have credences that lead her to make decisions that will lose her money in every world that she considers possible. Now, a book of bets loses an agent money if
So the Dutch Book Theorem (that is, premise (2)) can be stated as follows:
Theorem 1
(i) If
(ii) If
We now turn to the proof of this theorem. It is based on two pieces of mathematics: the first involves some basic geometrical facts about the dot product; the second involves a neat geometric characterization of the credences that satisfy Probabilism.
First, a well known fact about the dot product. If
- To prove Theorem 1(i), it suffices to show that, if
violates Probabilism, we can find a vector such that the angle between and is oblique for all worlds . - To prove Theorem 1(ii), it suffices to show that, if
satisfies Probabilism, there is no vector such that the angle between and is oblique or right for all and oblique for some .
Lemma 1
where, if
Thus, Lemma 1 says that the vectors that represent the probabilistic sets of credences are precisely those that belong to the convex hull of the vectors that represent the possible worlds.
How does this help? Let's take the case in which
Now let's take the case in which
![]() |
Figure 2: Again, the oval represents the convex hull of the possible worlds. If |
The Dutch Book Argument for the Principal Principle
The Principal Principle says, roughly, that an agent ought to defer to the chances when she sets her credences. One natural formulation of this (explicitly proposed by Jenann Ismael and entailed by a slightly stronger formulation proposed by David Lewis) is this:
Principal Principle It ought to be the case that
That is, the Principal Principle says that one's credence function ought to be a linear combination of the possible chance functions.
Now, adapting the proof of Theorem 1 above, replacing the possible worlds
Theorem 2
(i) If
(ii) If
But what does this tell us? Well, as before,
The Dutch Book Argument for Conditionalization
Conditionalization is the following norm:
Conditionalization Suppose our agent has credence
In fact, the Dutch Book argument for Conditionalization that we will present is primarily a Dutch Book argument for van Fraassen's Reflection Principle, which is equivalent to Conditionalization. The Reflection Principle says the following:
Reflection Principle Suppose our agent has credence
(i)
(ii)
That is, Reflection says that an agent's current credences ought to be a mixture of her planned future credences. Since Reflection and Conditionalization are equivalent, it suffices to establish Reflection.
Here is the theorem that provides the second premise of the Dutch Book argument for Reflection:
Theorem 3
(i) Suppose
(ii) Suppose
What does this say? It says that, if you plan to update in some way other than conditioning on your evidence, and thereby violate Reflection, there is a book
How do we prove this? Theorem 3(i) is the easier to prove. Suppose
Second, suppose that
Now we turn to Theorem 3(ii). Suppose
We construct
Then we can show that,
for all
by assumption. This completes the proof of Theorem 3(ii) and thus Theorem 3.
Your book has all chapters solving method very good i easily understand after read in detail thanks for share it phd application statement of purpose .
ReplyDeleteAre you tired of seeking loans and Mortgages,have you been turned down constantly By your banks and other financial institutions,We offer any form of loan to individuals and corporate bodies at low interest rate.If you are interested in taking a loan,feel free to contact us today,we promise to offer you the best services ever.Just give us a try,because a trial will convince you.What are your Financial needs?Do you need a business loan?Do you need a personal loan?Do you want to buy a car?Do you want to refinance?Do you need a mortgage loan?Do you need a huge capital to start off your business proposal or expansion? Have you lost hope and you think there is no way out, and your financial burdens still persists? Contact us (gaincreditloan1@gmail.com)
ReplyDeleteYour Name:...............
Your Country:...............
Your Occupation:...............
Loan Amount Needed:...............
Loan Duration...............
Monthly Income:...............
Your Telephone Number:.....................
Business Plan/Use Of Your Loan:...............
Contact Us At : gaincreditloan1@gmail.com
Phone number :+1-270-551-4764 (WhatsApp Only)
replica rolex watches, combining elegant style and cutting-edge technology, a variety of styles of replica rolex pearlmaster watches, the pointer walks between your exclusive taste style.
ReplyDeleteBukit Watu Jengger dengan ketinggian 1100 mdpl memungkinkan menjadi alternatif pendakian atau kemping sebelum Gunung Penanggungan dan Gunung Bahu. https://pesona-wisata.com/ Rekreasi ini benar-benar direferensikan untuk beberapa pendaki pemula karena medan yang tidak begitu terjal. Bukit Watu Jengger berada di Dusun Nawangan, Kecamatan Tawangrejo, Kabupaten Mojokerto.
ReplyDelete