Deterministic updating and the symmetry argument for Conditionalization
According to the Bayesian, when I learn a proposition to which I assign a positive credence, I should update my credences so that my new unconditional credence in a proposition is my old conditional credence in that proposition conditional on the proposition I learned. Thus, if is my credence function before I learn , and is my credence function afterwards, and , then it ought to be the case that There are many arguments for this Bayesian norm of updating. Some pay attention to the pragmatic costs of updating any other way (Brown 1976; Lewis 1999); some pay attention to the epistemic costs, which are spelled out in terms of the accuracy of the credences that result from the updating plans (Greaves & Wallace 2006; Briggs & Pettigrew 2018); others show that updating as the Bayesian requires, and only updating in that way, preserves as much as possible about the prior credences while still respecting the new evidence (Diaconis & Zabell 1982; Dietrich, List, and Bradley 2016). And then there are the symmetry arguments that are our focus here (Hughes & van Fraassen 1985; van Fraassen 1987; Grove & Halpern 1998).
In a recent paper, I argued that the pragmatic and epistemic arguments for Bayesian updating are based on an unwarranted assumption, which I called Deterministic Updating. An updating plan says how you'll update in response to a specific piece of evidence. Such a plan is deterministic if there's a single credence function that it says you'll adopt in response to that evidence, rather than a range of different credence functions that you might adopt in response. Deterministic Updating says that your updating plan for a particular piece of evidence should be deterministic. That is, if is a proposition you might learn, your plan for responding to receiving as evidence should take the form:
Let's start by laying out the symmetry argument. Suppose is a set of possible worlds, and is an algebra over . Then an updating plan on is a function that takes a credence function defined on and a proposition in and returns the set of credence functions that the updating plan endorses as responses to learning for those with credence function . Then we impose three conditions on a family of updating plans .
Deterministic Updating This says that an updating plan should endorse at most one credence function as a response to learning a given piece of evidence. That is, for any and in , endorses at most one credence function as a response to learning . That is, for all on and in .
Certainty This says that any credence function that an updating plan endorses as a response to learning must be certain of . That is, for any , on and in , if is in , then .
Symmetry This condition requires a bit more work to spell out. Very roughly, it says that the way that an updating plan would have you update should not be sensitive to the way the possibilities are represented. More precisely: Let and . Suppose is a surjective function. That is, for each in , there is in such that . And suppose for each in , is in . Then the worlds in are coarse-grained versions of the worlds in , and the propositions in are coarse-grained versions of those in . Now, given a credence function on , let be the credence function over such that . Then the credence functions that result from updating by in using are the image under of the credence functions that result from updating on using . That is, .
Now, van Fraassen proves the following theorem, though he doesn't phrase it like this because he assumes Deterministic Updating in his definition of an updating rule:
Theorem (van Fraassen) If satisfies Deterministic Updating, Certainty, and Symmetry, then is the conditionalization updating plan. That is, if , is defined on and is in with , then contains only one credence function and .
The problem is that, while Certainty is entirely uncontroversial and Symmetry is very plausible, there is no particularly good reason to assume Deterministic Updating. But the argument cannot go through without it. To see this, consider the following updating rule:
is not already certain of , then takes any credence function on and any proposition in and returns the set of valuation functions for the worlds in at which that proposition is true. Otherwise, it keeps unchanged.
It is easy to see that satisfies Certainty, since for each in . To see that satisfies Symmetry, the crucial fact is that . First, take a credence function in : that is, for some in . Then is in and so is in . And , so is in . Next, take a credence function in . That is, for some in . Then and thus is in , as required.
So satisfies Certainty and Symmetry, but it is not the Bayesian updating rule.
Now, perhaps there is some further desirable condition that fails to meet? Perhaps. And it's difficult to prove a negative existential claim. But one thing we can do is to note that satisfies all the conditions on updating plans on sets of probabilities that Grove & Halpern explore as they try to extend van Fraassen's argument from the case of precise credences to the case of imprecise credences. All, that is, except Deterministic Updating, which they also impose. Here they are:
Order Invariance This says that updating first on and then on should result in the same posteriors as updating first on and then on . This holds because, either way, you end up with .
Stationarity This says that updating on should have no effect if you are already certain of . That is, if , then . The second clause of our definition of ensures this.
Non-Triviality This says that there's some prior that is less than certain of the evidence such that updating it on the evidence leads to some posteriors that the updating plan endorses. That is, for some , some on , and some in , . Indeed, will satisfy this for any and any .
So, in sum, it seems that van Fraassen's symmetry argument for Bayesian updating shares the same flaw as the pragmatic and epistemic arguments, namely, they rely on Deterministic Updating, and yet that assumption is unwarranted.
In a recent paper, I argued that the pragmatic and epistemic arguments for Bayesian updating are based on an unwarranted assumption, which I called Deterministic Updating. An updating plan says how you'll update in response to a specific piece of evidence. Such a plan is deterministic if there's a single credence function that it says you'll adopt in response to that evidence, rather than a range of different credence functions that you might adopt in response. Deterministic Updating says that your updating plan for a particular piece of evidence should be deterministic. That is, if
- If I learn
, I'll adopt
- If I learn
, I might adopt , I might adopt , and I might adopt .
Let's start by laying out the symmetry argument. Suppose
Deterministic Updating This says that an updating plan should endorse at most one credence function as a response to learning a given piece of evidence. That is, for any
Certainty This says that any credence function that an updating plan endorses as a response to learning
Symmetry This condition requires a bit more work to spell out. Very roughly, it says that the way that an updating plan would have you update should not be sensitive to the way the possibilities are represented. More precisely: Let
Now, van Fraassen proves the following theorem, though he doesn't phrase it like this because he assumes Deterministic Updating in his definition of an updating rule:
Theorem (van Fraassen) If
The problem is that, while Certainty is entirely uncontroversial and Symmetry is very plausible, there is no particularly good reason to assume Deterministic Updating. But the argument cannot go through without it. To see this, consider the following updating rule:
- If
, then , where is the credence function on such that if is in , and is is not in ( is sometimes called the valuation function for , or the omniscience credence function at $w). - If
, then .
It is easy to see that
So
Now, perhaps there is some further desirable condition that
Order Invariance This says that updating first on
Stationarity This says that updating on
Non-Triviality This says that there's some prior that is less than certain of the evidence such that updating it on the evidence leads to some posteriors that the updating plan endorses. That is, for some
So, in sum, it seems that van Fraassen's symmetry argument for Bayesian updating shares the same flaw as the pragmatic and epistemic arguments, namely, they rely on Deterministic Updating, and yet that assumption is unwarranted.
References
- Briggs, R. A., & Pettigrew, R. (2018). An accuracy-dominance argument for conditionalization. Noûs. https://doi.org/10.1111/nous.12258
Thanks for sharing it is important for me. I also searched for that from here. Visit our site panda hepdesk
ReplyDeleteآموزش اندروید
ReplyDeleteThanks for sharing it is important for me. I also searched for that from here. Visit our site Epson Printer contact belgie
ReplyDeleteThanks for sharing such an Amazing information, I Couldn't leave without reading your blog. I have read another good blog, I think you have read it too. click here AVG helpdesk
ReplyDeleteExcellent items from you, man. I've understand your stuff prior to and you're just extremely great. I really like what you have got here, certainly like what you are stating and the way in which by which you are saying it. You are making it enjoyable and you continue to care for to stay it wise. I can not wait to read far more from you. That is actually a tremendous web site.
ReplyDeleteHeya i am for the first time here. I found this board and I find It truly useful & it helped me out a lot. I hope to give something back and aid others like you aided me.
ReplyDeleteReferensi games PC enteng terbaik untuk fans games seram. Dead Ruang menceritakan mengenai sekumpulan crew pesawat ruangan angkasa yang selamat dari kecelakaan menakutkan. https://gadgetstation.net/
ReplyDeleteMereka yang selamat harus usaha membuat perlindungan diri dan crew yang masih ada dari gempuran alien.
Beberapa alien cari dan mengincar mereka yang selamat. Alien-alien ini dapat keluar dan melonjak mendadak dari puing-puing pesawat.
I find the discussion of symmetry arguments within Bayesian updating very insightful.
ReplyDelete