Epistemic risk and permissive rationality (part I): an overview

I got interested in epistemic risk again, after a hiatus of four or five years, by thinking about the debate in epistemology between permissivists and impermissivists about epistemic rationality. Roughly speaking, according to the impermissivist, every body of evidence you might obtain mandates a unique rational set of attitudes in response --- this is sometimes called the uniqueness thesis. According to the permissivist, there is evidence you might obtain that doesn't mandate a unique rational set of attitudes in response --- there are, instead, multiple rational responses.

I want to argue for permissivism. And I want to do it by appealing to the sorts of claims about how to set your priors and posteriors that I've been developing over this series of blogposts (here and here). In the first of those blogposts, I argued that we should pick priors using a decision rule called the generalized Hurwicz criterion (GHC). That is, we should see our choice of priors as a decision we must make; and we should make that decision using a particular decision rule -- namely, GHC -- where we take the available acts to be the different possible credence functions and the utility of an act at a world to be a measure of its accuracy at that world.

Now, GHC is, in fact, not a single decision rule, but a family of rules, each specified by some parameters that I call the Hurwicz weights. These encode different attitudes to risk -- they specify the weight you assign to the best-case scenario, the weight you assign to the second-best, and so on down to the weight you assign to the second-worst scenario, and the weight you assign to the worst. And, what's more, many different attitudes to risk are permissible; and therefore many different Hurwicz weights are permissible; and so many versions of GHC are legitimate decision rules to adopt when picking priors. So different permissible attitudes to risk determine different Hurwicz weights; and different Hurwicz weights mandate different rational priors; and different rational priors mandate different rational posteriors given the same evidence. Epistemic rationality, therefore, is permissive. That's the argument in brief.

With this post, I'd like to start a series of posts in which I explore how this view plays out in the permissivism debate. If there are many different rationally permissible responses to the same piece of evidence because there are many different rationally permissible attitudes to risk, then how does that allow us to answer the various objections to permissivism that have been raised.

In this post, I want to do four things: first, run through a taxonomy of varieties of permissivism that slightly expands on one due to Elizabeth Jackson; second, explain my motivation for offering this argument for permissivism; third, discuss an earlier risk-based argument for the position due to Thomas Kelly; finally, situate within Jackson's taxonomy the version of permissivism that follows from my own risk-based approach to setting priors and posteriors.

Varieties of permissivism


Let's start with the taxonomy of permissivisms. I suspect it's not complete; there are likely other dimensions along which permissivists will differ. But it's quite useful for our purposes.

First, there are different versions of permissivism for different sorts of doxastic attitudes we might have in response to evidence. So there are versions for credences, beliefs, imprecise probabilities, comparative confidences, ranking functions, and so on. For instance, on the credal version of permissivism, there is evidence that doesn't determine a unique set of credences that rationality requires us to have in response to that evidence. For many different sorts of doxastic attitude, you can be permissive with respect to one but not the other: permissive about beliefs but not about credences, for instance, or vice versa.

Second, permissivism comes in interpersonal and intrapersonal versions. According to interpersonal permissivism, it is possible for different individuals to have the same evidence, but different attitudes in response, and yet both be rational. According to the intrapersonal version, there is evidence a single individual might have, and different sets of attitudes such that whichever they have, they'll still be rational. Most people who hold to intrapersonal permissivism for a certain sort of doxastic attitude also hold to the interpersonal version, but there are many who think intrapersonal permissivism is mistaken but interpersonal permissivism is correct.

Third, it comes in wide and narrow versions. This is determined by how many different attitudes are permitted in response to a piece of evidence, and how much variation there is between them. On narrow versions, there are not so many different rational responses and they do not vary too widely; on wide versions, there are many and they vary greatly.

Fourth, it comes in common and rare versions. On the first, most evidence is permissive; on the latter, permissive evidence is rare.

I'll end up defending two versions of permissivism: (i) a wide common version of interpersonal permissivism about credences; and (ii) a narrow common version of intrapersonal permissivism about credences.

Why argue for permissivism?


Well, because it's true, mainly. But there's another motivation for adding to the already crowded marketplace of arguments for the position. Many philosophers defend permissivism for negative reasons. They look at two very different sorts of evidence and give reasons to be pessimistic about the prospects of identifying a unique rational credal response to them. They are: very sparse evidence and very complex evidence. In the first, they say, our evidence constrains us too little. There are too many credal states that respect it. If there is a single credal response that rationality mandates to this sparse evidence, there must be some way to whittle down the vast set of states that respect it leave us with only one. For instance, some philosophers claim that, among this vast set of states, we should pick the one that has lowest informational content, since any other will go beyond what is warranted by the evidence. But it has proven extremely difficult to identify that credal state in many cases, such as von Mises' water-wine example, Bertrand's paradox, and van Fraassen's cube factory. Despairing of finding a way to pick a single credal state from this vast range, many philosophers have become permissivist. In the second sort of case, at the other extreme, where our evidence is very complex not very sparse, our evidence points in too many directions at once. In such cases, you might hope to identify a unique way in which to weigh the different sources of evidence and the direction in which they point to give the unique credal state that rationality mandates. And yet again, it has proven difficult to find a principled way of assigning these weights. Despairing, philosophers have become permissivist in these cases too.

I'd like to give a positive motivation for permissivism---one that doesn't motivate it by pointing to the difficulty of establishing its negation. My account will be based within accuracy-first epistemology, and it will depend crucially on the notion of epistemic risk. Rationality permits a variety of attitudes to risk in the practical sphere. Faced with the same risky choice, you might be willing to gamble because you are risk-seeking, and I might be unwilling because I am risk-averse, but we are both rational and neither more rational than the other. On my account, rationality also permits different attitudes to risk in the epistemic sphere. And different attitudes to epistemic risk warrant different credal attitudes in response to a body of evidence. Therefore, permissivism.

Epistemic risk encoded in epistemic utility


It is worth noting that this is not the first time that the notion of epistemic risk has entered the permissivism debate. In an early paper on the topic, Thomas Kelly appeals to William James' distinction between the two goals that we have when we have beliefs---believing truths and avoiding errors. When we have a belief, it gives us a chance of being right, but it also runs the risk of being wrong. In constrast, when we withhold judgment on a proposition, we run no risk of being wrong, but we give ourselves no chance of being right. Kelly then notes that whether you should believe on the basis of some evidence depends on how strongly you want to believe truths and how strongly you don't want to believe falsehoods. Using an epistemic utility framework introduced independently by Kenny Easwaran and Kevin Dorst, we can make this precise. Suppose:
  1. I assign a positive epistemic utility of $R > 0$ to believing a truth or disbelieving a falsehood;
  2. I assign a negative epistemic utility (or positive epistemic disutility) of $-W < 0$ to believing a falsehood or disbelieving a truth; and
  3. I assign a neutral epistemic utility of 0 to withholding judgment.
And suppose $W > R$. And suppose further that there is some way to measure, for each proposition, how likely or probable my evidence makes that proposition---that is, we assume there is a unique evidential probability function of the sort that J. M. Keynes, E. T. Jaynes, and Timothy Williamson envisaged. Then, if $r$ is how likely my evidence makes the proposition $X$, then:
  1. the expected value of believing $X$ is $rR + (1-r)(-W)$,
  2. the expected value of disbelieving $X$ is $r(-W) + (1-r)R$, and
  3. the expected value of withholding judgment is $0$.
A quick calculation shows that believing uniquely maximises expected utility when $r > \frac{W}{R+W}$, disbelieving uniquely maximises when $r < \frac{R}{R+W}$, and withholding uniquely maximises if $\frac{R}{R +W} < r < \frac{W}{R+W}$. What follows is that the more you disvalue being wrong, the stronger the evidence will have to be in order to make it rational to believe. Now, Kelly assumes that various values of $R$ and $W$ are rationally permissible---it is permissible to disvalue believing falsehoods a lot more than you value believing truths, and it is permissible to disvalue that just a little more. And, if that is the case, different individuals might have the same evidence while rationality requires of them different doxastic attitudes---a belief for one of them, who disvalues being wrong only a little more than they value being right, and no belief for the other, where the difference between their disvalue for false belief and value for true belief is much greater. Kelly identifies the values you pick for $R$ and $W$ with your attitudes to epistemic risk. So different doxastic attitudes are permissible in the face of the same evidence because different attitudes to epistemic risk are permissible.

Now, there are a number of things worth noting here before I pass to my own alternative approach to epistemic risk.

First, note that Kelly manages to show that epistemic rationality might be permissive even if there is a unique evidential probability measure. So even those who think you can solve the problem of what probability is demanded by the very sparse evidence and the very complex evidence we described above, still they should countenance a form of epistemic permissivism if they agree that there are different permissible values for $R$ and $W$.

Second, it might seem at first that Kelly's argument gives interpersonal permissivism at most. After all, for fixed $R$ and $W$, and a unique evidential probability $r$ for $X$ given your evidence, it might seem that there is always a single attitude---belief in $X$, disbelief in $X$, or judgment withheld about $X$---that maximises expected epistemic value. But this isn't always true. After all, if $r = \frac{R}{R + W}$, then it turns out that disbelieving and withholding have the same expected epistemic value, and if $r = \frac{W}{R+W}$, then believing and withholding have the same expected epistemic value. And in those cases, it would be rationally permissible for an individual to pick either.

Third, and relatedly, it might seem that Kelly's argument gives only narrow permissivism, since it allows for cases in which believing and withholding are both rational, and it allows for cases in which disbelieving and withholding are both rational, but it doesn't allow for cases in which all three are rational. But that again is a mistake. If you value believing truths exactly as much as you value believing falsehoods, so that $R = W$, and if the objective evidential probability of $X$ given your evidence is $r = \frac{1}{2}$, then believing, disbelieving, and withholding judgment are all permissible. Having said that, there is some reason to say that it is not rationally permissible to set $R = W$. After all, if you do, and if $r = \frac{1}{2}$, then it is permissible to both believe $X$ and believe $\overline{X}$ at the same time, and that seems wrong.

Fourth, and most importantly for my purposes, Kelly's argument works for beliefs, but not for credences. The problem, briefly stated, is this: suppose $r$ is how likely my evidence makes proposition $X$. And suppose $\mathfrak{s}(1, x)$ is the accuracy of credence $x$ in a truth, while $\mathfrak{s}(0, x)$ is the accuracy of credence $x$ in a falsehood. Then the expected accuracy of credence $x$ in $X$ is
\begin{equation}\label{eeu}
r\mathfrak{s}(1, x) + (1-r)\mathfrak{s}(0, x)\tag{*}
\end{equation}
But nearly all advocates of epistemic utility theory for credences agree that rationality requires that $\mathfrak{s}$ is a strictly proper scoring rule. And that means that (*) is maximized, as a function of $x$, at $x = r$. So differences in how you value epistemic utility don't give rise to differences in what credences you should have. Your credences should always match the objective evidential probability of $X$ given your evidence. Epistemic permissivism about credences would therefore be false.

I think Kelly's observation, supplemented with Easwaran's precise formulation of epistemic value, furnishes a strong argument for permissivism about beliefs. But I think we can appeal to epistemic risk to give something more, namely, two versions of permissivism about credences: first, an wide common interpersonal version, and second a narrow common intrapersonal version.

Epistemic risk encoded in decision rules


To take the first step towards these versions of permissivism for credences, let's begin with the observation that there are two ways in which risk enters into the rational evaluation of a set of options. First, risk might be encoded in the utility function, which measures the value of each option at each possible world; or, second, it might be encoded in the choice rule, which takes in various features of the options, including their utilities at different worlds, and spits out the set of options that are rationally permissible.

Before we move to the epistemic case, let's look at how this plays out in the practical case. I am about to flip a fair coin. I make you an offer: pay me £30, and I will pay you £100 if the coin lands heads and nothing if it lands tails. You reject my offer. There are two ways to rationalise your decision. On the first, you choose using expected utility theory, which is a risk-neutral decision rule. However, because the utility you assign to an outcome is a sufficiently concave function of the money you get in that outcome, and your current wealth is sufficiently small, the expected utility of accepting my offer is less than the expected utility of rejecting it. For instance, perhaps your utility for an outcome in which your total wealth is £$n$ is $\log n$. And perhaps your current wealth is £$40$. Then your expected utility for accepting my offer is $\frac{1}{2}\log 110 + \frac{1}{2} \log 10 \approx 3.502$ while your expected utility for rejecting it is $\log 40 \approx 3.689$. So you are rationally required to reject. On this way of understanding your choice, your risk-aversion is encoded in your utility function, while your decision rule is risk-neutral. On the second way of understanding your choice, it is the other way around. Instead of expected utility theory, you choose using a risk-sensitive decision rule, such as Wald's Maximin, the Hurwicz criterion, the generalized Hurwicz criterion, Quiggin's rank-dependent utility theory, or Buchak's risk-weighted expected utility theory. According to Maximin, for instance, you are required to choose an option whose worst-case outcome is best. The worst case if you accept the offer is the one in which the coin lands tails and I pay you back nothing, in which case you end up £$30$ down, whereas the worst case if you refuse my offer is the status quo in which you end up with exactly as much as you had before. So, providing you prefer more money to less, the worst-case outcome of accepting the offer is worse than the worse-case outcome of refusing it, so Maximin will lead you to refuse the offer. And it will lead you to do that even if, for instance, you value money linearly. Thus, there is no need to reflect your attitude to risk in your utility function at all, because it is encoded in your decision rule.

I take the lesson of the Allais paradox to be that there is rational risk-sensitive behaviour that we cannot capture entirely using the first method here. That is, there are rational preferences that we cannot recover within expected utility theory by making the utility function concave in money, or applying some other tweak. We must instead permit risk-sensitive choice rules. Now, there are two sorts of such rules: those that require credences among their inputs and those that don't. In the first camp, perhaps the most sophisticated is Lara Buchak's risk-weighted expected utility theory. In the second, we've already met the most famous example, namely, Maximin, which is maximally risk-averse. But there is also Maximax, which is maximally risk-seeking. And there is the Hurwicz criterion, which strikes a balance between the two. And there's my generalization of the Hurwicz criterion, which I'll abbreviate GHC. As I've discussed over the last few blogposts, I favour the latter in the case of picking priors. (For an alternative approach to epistemic risk, see Boris Babic's recent paper here.)

To see what happens when you use GHC to pick priors, let's give a quick example in a situation in which there are just three possible states of the world to which you assign credences, $w_1$, $w_2$, $w_3$, and we write $(p_1, p_2, p_3)$ for a credence function $p$ that assigns $p_i$ to world $w_i$. Suppose your Hurwicz weights are these: $\alpha_1$ for the best case, $\alpha_2$ for the second-best (and second-worst) case, and $\alpha_3$ for the worst case. And your accuracy measure is $\mathfrak{I}$. Then we're looking for those that minimize your Hurwicz score, which is$$H^A(p) = \alpha_1\mathfrak{I}(p, w_{i_1}) + \alpha_2\mathfrak{I}(p, w_{i_2}) + \alpha_3\mathfrak{I}(p, w_{i_3})$$when$$\mathfrak{I}(p, w_{i_1}) \geq \mathfrak{I}(p, w_{i_2}) \geq\mathfrak{I}(p, w_{i_3})$$Now suppose for our example that $\alpha_1 \geq \alpha_2 \geq \alpha_3$. Then the credence functions that minimize $H^A_{\mathfrak{I}}$ are$$\begin{array}{ccc} (\alpha_1, \alpha_2, \alpha_3) & (\alpha_1, \alpha_3, \alpha_2) & (\alpha_2, \alpha_1, \alpha_3) \\ (\alpha_2, \alpha_3, \alpha_1) & (\alpha_3, \alpha_1, \alpha_2) & (\alpha_3, \alpha_2, \alpha_1) \end{array}$$

With that example in hand, and a little insight into how GHC works when you use it to select priors, let's work through Elizabeth Jackson's taxonomy of permissivism from above.

First, since the attitudes we are considering are credences, it's a credal version of permissivism that follows from this risk-based approach in accuracy-first epistemology.

Second, we obtain both an interpersonal and an intrapersonal permissivism. A particular person will have risk attitudes represented by specific Hurwicz weights. And yet, even once those are fixed, there will usually be a number of different permissible priors. That is, rationally will permit a number of different credal states in the absence of evidence. For instance, if my Hurwicz weights are $\alpha_1 = 0.5$, $\alpha_2 = 0.3$, $\alpha_3 = 0.2$, then rationality allows me to assign 0.5 to world $w_1$, 0.3 to $w_2$ and 0.2 to $w_3$, but it also permits me to assign $0.3$ to $w_1$, $0.2$ to $w_2$, and $0.5$ to $w_3$.

So there is intrapersonal credal permissivism, but it is reasonably narrow---there are only six rationally permissible credence functions for someone with the Hurwicz scores just specified, for instance. On the other hand, the interpersonal permissivism we obtain is very wide. Indeed, it is as wide as range of permissible attitudes to risk. As we noted in a previous post, for any probabilistic credence function over a space of possible worlds, there are Hurwicz weights that will render those credences permissible. So providing those weights are rationally permissible, so are the credences.

Finally, is the permissivism we get from this risk-based approach common or rare? So far, we've just considered it in the case of priors. That is, we've only established permissivism in the case in which you have no evidence. But of course, once it's established there, it's also established for many other bodies of evidence, since we obtain the rational credences given a body of evidence by looking to what we obtain by updating rational priors by conditioning on that evidence. And, providing a body of evidence isn't fully informative, if there are multiple rational priors, they will give rise to multiple rational posteriors when we condition them on that evidence. So the wide interpersonal credal permissivism we obtain is common, and so is the narrow intrapersonal credal permissivism.

Comments

  1. This comment has been removed by a blog administrator.

    ReplyDelete
  2. This comment has been removed by a blog administrator.

    ReplyDelete
  3. This comment has been removed by a blog administrator.

    ReplyDelete
  4. This comment has been removed by a blog administrator.

    ReplyDelete
  5. This comment has been removed by a blog administrator.

    ReplyDelete
  6. This comment has been removed by a blog administrator.

    ReplyDelete

Post a Comment